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Universality in the pair contact process with diffusion
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The pair contact process with diffusion is studied by means of multispin Monte Carlo simulations and
density matrix renormalization group calculations. Effective critical exponents are found to behave nonmono-
tonically as functions of time or of system length and extrapolate asymptotically towards values consistent with
the directed percolation universality class. We argue that an intermediate regime exists where the effective
critical dynamics resembles that of a parity conserving process.
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[. INTRODUCTION fusion rates @), or continuously varying exponenfg], or
that scaling may even be violatd®]. More recently the
Out of equilibrium systems may display phase transitiongoption of a slow crossover to DP was also discusg&d
analogous to those found in their equilibrium counterpartsalthough the general belief is that the PCPD belongs to a
These transitions are classified into distinct universalitynovel universality clas§7,8,10—12. Field theoretical meth-
classes, characterized by a set of critical exponébtg].  ods, which have been successfully applied to other reaction-
Particular attention has been paid to one-dimensional sysiffusion modeld13] failed so far to clarify the critical prop-
tems with transitions from an active state into absorbingerties of the PCP3,14).
states, i.e., frozen configurations from which the system can- In this paper we present some insights into the PCPD. We
not escape. For these systems, so far, only two distinct unshow that accurate numerical results from Monte Cevig)
versality classes have been firmly established: the directesimulations and density matrix renormalization group
percolation(DP) and the parity conservinPC) universality (DMRG) calculations convincingly demonstrate that for suf-
class. While the former is ubiquitous and found in severalfficiently long times and system lengths the exponents cross
systems with very different dynamical rules, the latter is onlyover towards the DP values. Corrections to scaling are, how-
known to occur when extra symmetries are pre$érf]. ever, rather strong and only an accurate extrapolation of the
A model which has attracted quite some interest recentlyeffective critical exponents allows to identify the final
because it may indeed belong to a novel universality clasasymptotic critical behavior. We give evidence that in the
[3] is the so-called pair contact process with diffusionnear-asymptotic region the model shows effective exponents
(PCPD. Despite a rather intense activity in the past coupleclose to the PC class values, which suggests that the critical
of years[4—-12], the understanding of the PCPD and its re-behavior of the system is described by two competing fixed
lation with other known models is still unsatisfactory. In the points.
fermionicversion of the model—the one studied here—each
lattice site is either occupied by a single parti@¢ or empty

(0). The reactions are Il. RESULTS ON BULK PARTICLES

AND PAIR DENSITIES

AAO—AAA n (1-p)(1—d) 1 Our MC simulations exploit a technique known as multi-
OAALAAA Withrate —————, @ spin coding[15]. The basic idea is that in a simulation of 64
systems, each with sites, the occupation of siten the kth
AA—00 with rate p(1—d), simulation is stored in th&th bit of 64-bit wordA[i]. To
perform the reactioMAO— AAA in all 64 systems at a ran-
A0« 0A withrate d domly chosen sité and its neighbors, one logical operation

Ali+1]=Ali+1]\/(A[i]N\A[i—1]) suffices, where\/
with 0<d<1, 0<p<1. The analysis of the critical proper- and/\ are the logical operationsr and AND, respectively.
ties of the PCPD has shown to be much more difficult tharOther reactions require only slightly more elaborate logical
all similar models analyzed so far and several scenarios hawsgperations. A direct implementation along these lines might
been proposed. First, a similarity of the exponedts, and  result in 64 simulations, each of which statistically correct,
z=y /v, (whereyy andv, are the correlation length expo- but strongly correlated to each other because the site selec-
nents along the time and space directions @gnthe order tion is shared. To alleviate this correlation without sacrificing
parameter exponenwith those of the PC claggl] was re-  efficiency, we employ random bit patterns that decide which
ported, although in the PCPD there is no conservation ofeaction will be attempted in which system. The strong point
parity. It was later suggested that the PCPD could belong tof multispin coding is its efficiency. As illustrated above,
a new universality class with exponents close to, but differonly a few logical operationgeach usually carried out in a
ent from, the PC valud$]. It has also been argued that there single clock cycle without delaysuffice to update a site in
could be two universality class¢6] at small and large dif- 64 systems simultaneously. For each combinatiod ahdp
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FIG. 1. Ratio of the particle densify and pair density*, as a FIG. 2. Plot of 5.4 atd=0.5 andp=0.1524,p=0.152 45, and

function oft=”', with y'=0.33, for the PCPD witll=0.5 and at  p=0.1525 (from bottom to top obtained from the decay of the
the estimated critical poinp=0.15245. This ratio approaches a particles and pairs densities. The dashed lines are parabolic fits to

constant. the data. The two horizontal lines show the rafitw for the DP
. . . d PC class. Insetd=0.1 and p=0.1110, p=0.11105,
we simulated 64 systems with=100000 sites over 3 ino 1111 class. inse P P P

X 10° Monte Carlo time units, in about 15 h on a single-
processor workstation. We also simulatedxB3l systems
with L =100 000 sites over ¥0Mlonte Carlo time units on a lated and largely cancel each other in the ratio. _
parallel computer, fod=0.5 andp=0.152 45, our estimate The data of Fig. 1 also provide an estimate of the leading
for the critical point. correction term in the asymptotic limit—c, which appears

A standard procedure to obtain critical exponents byto be of the typep/p* ~C(1+ Dt*V') with y'~0.33, as
means of Monte Carlo simulations is to study the decay oshown by the linear approach to the asymptotic behavior of
the particle density(t) as a function of time, starting from  the data when plotted verstis®33 This exponent is much
a random configuration of particles. At the critical point onelarger than its equivaleng in the particle and pair densities,
has p(t)~t~#/"I. To monitor the decay it is convenient to which implies that the leading corrections ferand p* can-
define the effective exponendtz= —dIn p(t)/dInt. Typically  cel in the ratiop/p*. We tested that a similar cancellation
Seft IS plotted as a function of i/ At the critical point, in the  also occurs in the process—3A, 2A—0, which belongs to
limit t—oc, it approaches a finite value>{z— B/v|), while  the PC universality clagd]: the leading correction ip and
it deviates upwards or downwards with respect to this valug* scales as™ %8, whereas the leading correction in the ratio
in the inactive and active phases, respectively. This criteriop/p* scales as 1/
allows to estimate the critical point location and the ratio Figure 2 shows a plot of.4 atd=0.5 as a function op
Blv| [1]. Some care, however, has to be taken when correcand p*, calculated in the PCPD from the decay of particles
tions to scaling are particularly strong, for example, whenand pairs, respectively. Three different values fohave
p(t)~t~A"I(1+ct™”) with y<1 andc a constant. In this been plotted around the critical point which we estimate as
casede plotted as a function of Liapproacheg/ v with an  p.=0.152 4%5). Forp>p, (inactive phaseandp<p, (ac-
infinite slope. The ideal situation would be to pléfy as a  tive phase S rapidly veers up and down, as expected. At
function of 1t” as in that case the approach to the asymptotithe critical point, 5.4 approaches thg axis with a finite
value would be linear. Further on in this paper we will give slope, indicating that the leading correction to scaling is most
numerical evidence that the correction-to-scaling exponent likely described by an exponent roughly equal&dtself. A
is close tog/v) (which is much smaller than)1A natural  parabolic fit through the data yields as a common estimate
choice is therefore to plofe; as a function of the particle for the critical exponents/»=0.17. Similar calculations
densityp instead of 1t, to avoid infinite slopes. were repeated for other values of the diffusion coefficigent

Besides the decay of the particle dengitywe also con- =0.05, 0.1, 0.2, and 0.@he inset of Fig. 2 shows the case
sider the decay of the pair densitf =(AA). Before pre- d=0.1), with the same results which we can summarize with
senting the results for the critical exponents we analyze théhe estimated/»=0.171). This value is consistent with the
behavior of the ratigp/p* at the critical point. Such a quan- DP class exponens/v;=0.159.
tity, which is shown in Fig. 1 fod=0.5, approaches a con-  An alternative way to calculate critical exponents would
stant value £ 2.45) asymptotically for long times. The most be to use a linear fit of the densities versus time on a double-
important consequence of this fact is that in PCPD one catogarithmic scale. However, such fits are hazardous when
extract the critical exponerg/ vy both from the decay of the dealing with very slow convergence, as is the case here, and
particle and pair densitiefl6]. Numerically the ratio is may lead to wrong estimates for the critical exponents. We
much better behaved than the individual densitiend p*, illustrate this in Fig. 3 which shows the plot of the average
as fluctuations in the individual densities are highly corre-particle density as a function of the time in a double-
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=0.152 45) for lattices up t&. =60 calculated from the decay of
FIG. 3. Log-log plots ofp (particle density vst. (8) d=0.5,  particle (circles and pair(squaresdensities as function of the lat-
p=0.1524,p=0.152 45, ancp=0.1525(from top to botton. (b) tice lengths. The dotted and dashed lines are fits in powers of the
d=0.9 andp=0.2330,p=0.2335, andy=0.234(from top to bot-  gensities. Insety.; for d=0.2.
tom). The critical point densities are plotted as thick solid lines. The
dashed lines are linear fits to the data, shifted for clarity. of moderate lengthgl9]. As usual in DMRG, we used open
boundary conditions. In the PCPD on a lattice of finite length
logarithmic scale fod=0.5 andd=0.9. In the former case a there are only two stationary states: a state with no particles
straight line(dashed fits extremely well the critical density and a state occupied by a single diffusing particle. To induce
decay leading to the estimafigy=0.219. The analysis of the a finite density of particles we added a reaction A at the
effective exponentsee Fig. 2, however, provides a closer two boundary sites. The particle density decays from the two
inspection of the local slopes of the double-logarithmic databoundaries and forms a U-shaped profile. For chains of vari-
This analysis reveals some remaining curvature, and the finaus lengths we calculated the density of partig¢k) and
estimate of the exponent is significantly lower, compared tof pairsp* (L) at the central site of a system of lendthAt
that obtained from the fit in the double-logarithmic scale. Inthe critical point these quantities decay in the lifnit o~ as
the case of higher diffusiofsee Fig. 8)] the curvature is p(L)~p*(L)~L Pve,
more pronounced and clearly visible also in the double- Figure 4 shows the effective exponentyes=
logarithmic plot, which can be fitted by two straight lines —dIn p(L)/dInL versusp for d=0.5 at the critical point. As
with slopes 8.4~0.277 in the range £Int<8, and with in Fig. 2, we include also the data for the pairs. Dotted and
Ss~0.212 for 16sInt=<15. Notice that the former exponent dashed lines are fits with polynomials in the densities. Again,
is consistent with that expected for the PC claskc( a testof good convergence is that both exponents extrapolate
=0.286[1]). to the same asymptotic value. This requirement seems indeed
Again an extrapolation of the effective exponéas done to be fulfilled and we find as extrapolatig®/ v, =0.274).
in Fig. 2) shows convergence to a value consistent with DPThis exponent is again consistent with the DP vaBle/,
Note that the valugd/»~0.21 is consistent with the most =0.252 [1]. Similar results have also been found for other
recent Monte Carlo estimates for the PCPL1,17. In par-  values of the diffusion coefficiend. Extrapolations ford
ticular, Kockelkoren and Chatgl1] performed a series of =0.2 are shown in the inset of Fig. 4. At smdithe maxima
Monte Carlo simulations for a bosonic version of the PCPDin vy shift to longerL, thus extrapolations are somewhat
where the constraint of one particle per site is released. Theless stable. In this case we take the estimate obtained from
estimation of critical exponents is based on a straight-line fithe particlesg/v, =0.285).
to a double-logarithmic plot op versust, from which they Previous DMRG resultf4] were restricted to the density
find B/v=0.20Q5). This bosonic version of the model is of particles and to smaller systems than that studied here.
claimed to suffer less from corrections to scaling than theThe data for the effective exponent showed a monotonic be-
fermionic case. Notice, however, that also in the fermionichavior (except at very strong diffusiorand were analyzed
PCPD studied here the density decaydat0.5 [see Fig. using an extrapolation with polynomes inL1/These ex-
3(a)] is rather straight in a double-logarithmic plot for simu- trapolations lead to a value consistent with the PC class ex-
lation times similar to those in Refll]. The advantage of ponentB/v, =0.50[4]. The present calculation, extended to
the effective exponent analysis performed here is that it althe density of pairs and to longer systems, reveals that non-
lows to extrapolate the numerical results to time scaéles monotonicity in the effective exponent is a common feature
yondthose actually simulated. at all d. This nonmonotonicity leads to a rather strong de-
Next we present some DMRG results. DMRGB] allows  crease of the extrapolated exponent compared to the esti-
to calculate accurate stationary state probabilities for chainmates of Ref[4].
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FIG. 6. Scaled particle density far=0.9 at the estimated criti-
cal pointp=0.2335 forL =100, 200, 500, 1000, 2000, and 5000.
Inset: plot of Int vs InL for two values of the diffusion constant.
We estimatez=1.61(3) ford=0.9 andz=1.70(3) ford=0.2.

FIG. 5. Plot of the effective exponerii as a function of 1/
for d=0.2, 0.5, 0.8, and 0.9. Inset: blowup of the data &br
=0.5.

I1l. RESULTS ON THE DYNAMICAL EXPONENT . . . ) )
the critical point and on a finite system the particle density

From the ratio of the exponen&/v, and g/v| one can decays ap=t"P"If(tL~?), with f a scaling function. For
estimate the dynamical exponemt=v /v, . Since both finite L, p follows a power-law decay up to a characteristic
Blv, and B/v, are consistent with DP, also the dynamical time 7 after which it drops exponentially. One expects that
exponentz agrees with the DP value,p=1.58. It is, how- scales as~L?* To estimater we calculatec for lattices up
ever, instructive to show the results of an independent calcuto L=5000 andt=10" Monte Carlo time units. Figure 6
lation of z. This quantity can be obtained from a finite-size shows a plot of Int¢’lp) versus Irt for variousL and d
scaling analysis ofA, the gap of the master operator, which =0.9. The intersection of the data with a horizontal line at
is the inverse of the relaxation time of the systésme Ref.  t#"Ip=k (with k a constantprovides an estimate aof. As
[19] for detail9. As a function of the system lengththe gap  we work in a region where the particle density is rather low

decays adA ~L "~ and fluctuations are large, and as the calculationrefjuires
Figure 5 shows a plot of the effective exponent= very smooth data, we performed averages over a large num-

—dInA/dInL versus 1. The calculations are similar to ber of samples ¥10%). For the calculation we used/ v,

those reported in Ref4], but now for longer system@pto  =0.17, which is the value determined above, &zd—2

L=46 compared td-=30 of Ref.[4]). The critical point (see Fig. 6. The inset shows a double-logarithmic plot of
locations were obtained from Monte Carlo simulations,versuslL for d=0.2 andd=0.9 at their critical points. In the
which for this purpose are faster and more efficient tharformer case we restricted ourselveslie- 2000 as the rel-
DMRG. Therefore we concentrated our computational effortsevant times are typically longer at weak than at stronger
on a single value op=p. and could obtain results for longer diffusion, as expected. Notice that in both cases the data are
systems. As is clear from Fig. 5, the exponegt is rather  well fitted by straight lines yielding the estimates
sensitive to the value of the diffusion raleAs the estimates =1.70(3) ford=0.2 andz=1.61(3) ford=0.9, where the
of B/v, andB/v| are instead rather stable as a functiordof latter value is consistent with the dynamical exponent of di-
we contribute this sensitivity to rather strong finite-size ef-rected percolatiorzpp=1.58. The results generally confirm
fects. Notice that the finité corrections change sign from the DMRG findings according to which the dynamical expo-
the weak to the strong diffusion regime. The border value isient is generically smaller, for finite, at higher diffusivity.
aroundd=0.5 wherez« has a very weak dependencelon  We also notice that by varying the value Bfv entering in
The data(see insetrun extremely close to the PC value they axis of Fig. 6 one changes the estimate ZoFor in-
zpc=1.75. At higher diffusion rated~0.8—0.9 the effective stance, if we takgd/v=0.20, as calculated in Refl1], this
exponentz; for the range of sizes investigated is much |eads to an increase of 0.03 in the estimated value.féhe
lower thanzpc. At the strongest diffusion investigated, ex- estimate ofz is rather stable for changes in the constant
trapolations with different forms for the correction to scaling
terms as 1/ or 1A/L yield values in the range 15z
=1.65, which should be compared with the DP vaiip
=1.58. Current Monte Carlo estimates from various authors Boundary quantities are easily accessible in DMRG tech-
[5,6,11] place the exponert in the range 1.7-1.8 and the niques[20], as one is basically forced to work with open
calculations were mostly performed in the weak diffusionboundary conditions. Surface criticality in absorbing phase
regime. transitions has been the subject of several studies in the past
We also performed a series of Monte Carlo simulations toyears both for models in the DR21] and in the PC[22]
calculate the exponentusing finite-size scaling analysis. At universality classes. In the latter case, it is known that there

IV. RESULTS ON SURFACE DENSITIES

036113-4



UNIVERSALITY IN THE PAIR CONTACT PROCES. . .. PHYSICAL REVIEW E 68, 036113 (2003

0.8 ‘ 1.6 2.5
*d=02
cd=05 M
. PC,, “‘«.‘“ +d=09 147 o
. o --- Cubic fit |— , PC
07 ::\\\‘ A‘A i ‘AA 15 | surf. L
N ., 12+ N ,,cay!ﬁﬂ’&
. ”ED " S N k- -—eseesee -4
5 DP o a g T — 1 ! ;
“; lll’f i \AB o S o)
~ ] "«,\ o . = | PO 0 001 0.02
. o N °*.\ Tl
L . N ] -
0.6 . o
‘. o IS S ¢d=02
RS ) 08 | *| ed=05
v = DP 4d=09
N sort -~ Cubic fit [
0.5 ‘ ‘ ‘ ‘ 0.6 ] ' : -
0.1 0.2 03 0.4 05 0.05 0.1 0.15 02 0.25
$
o’ p

FIG. 7. Plots ofyS, for three different values of the diffusion FIG. 8. Plots ofyg vs p* for different values of the diffusion
constant. Horizontal lines are the reference exponents for the DFonstant and absorbing boundary conditions. Inggfvs p** cal-
and PC universality classes. culated from the surface pair density.

are two distinct surface exponents depending on the type dhere is no clear signature of nonmonotonic behavior, except
boundary conditions applief22]. The results of a DMRG for the cased=0.5 where the data for the largest systems
calculation of the surface critical exponents for a reaction{fass through a maximum.
diffusion model in the PC class are presented in the Appen- We also analyzed the effective exponent data from the
dix. Here, we report on the surface critical exponent calcupair densityp* ® which are shown in the inset of Fig. 8 in the
lations for the PCPD, using the same types of boundargase of absorbing BCs, and plotted as functiong’™f. In
conditions as in the Appendix. the rangad=<0.5 the data extrapolate close to the PC surface

As in the calculation of the bulk particle density of the exponent3%/ v, ~1.11 as for the particle density. At very
preceding section we inject particles through the reaction Gtrong diffusion (I=0.9) the surface effective exponent
—A at the boundary site labeled by the positioal in  shows a nonmonotonic behavior with a maximum around
order to induce a finite density of particles in the system, andy,~2.2. Notice that particle and pair exponents in this case
we measure the particle densj§(L) at the opposite bound- are rather far apart from each other and it is quite hard to find
ary sitei=L. Asymptotically forL—«, we expectp*(L) a common extrapolation value. We would expect g a
NL_BS/VL’ whereg® s the order parameter surface exponentsimilar behavior as for the bulk exponents, i.e., an increase
The two different boundary conditio®Cs) applied at the followed by a decrease towards the asymptotic value. We
sitei =L are:(a) No particles are allowed to leave the systemsuspect that in the present surface exponent calculation the
from the boundary site antb) particles may diffuse out of decreasing side has barely been reached. So we tend to dis-
the system, i.e., the reactighi—0 (with rated) is added at trust the extrapolation as estimates of the genuine asymptotic
that site. We refer to these eeflectingandabsorbingbound- ~ behavior. They rather provide some insight on the preasymp-
ary conditions, respectively. totic region and actually point to a similarity with PC surface

In Fig. 7 we plot the effective exponentS,=  €xponents at weak diffusion.
—dInp L)/ aInL versusp® in the case of reflecting BCs.
Horizontal lines show the ratig3%/v, for DP (=0.667
[19,21)) and PC &0.72[22]). In the DP case the different
BCs produce the same critical exponent. Effective exponents To conclude, by combining Monte Carlo and DMRG cal-
in this case grow monotonically, contrary to what is foundculations we analyzed the critical properties of the pair con-
for bulk exponents. Notice that a cubic fit yields a quitetact process with diffusion. This model has been the subject
stable estimat@®/ v, =0.72(1) in the rangel<0.5, a value  of increasing attention in recent years. Although the debate
actually consistent with the surface exponent for the PC clasaround it has not yet been settled, the main belief is that the
(see Appendix Only at higherd we observe some deviation PCPD belongs to a novel universality class which differs
from PC. The fact that the extrapolated surface exponentom the known DP and PC classes.
vary with d, while our current estimates for the bulk expo-  In our opinion, however, the most plausible scenario for
nents are independent ah is an indication that the former the PCPD is that it ultimately falls into the DP universality
are not yet the correct asymptotic ones. class. The asymptotic behavior is, however, masked by rather

Figure 8 showsyg, versusp® for the case of absorbing strong finite size and time effects, characterized by small
boundary conditions. Again for weak diffusion the exponentcorrection-to-scaling exponents, as our Monte Carlo simula-
seems to extrapolate rather convincingly to values close ttions for the decays of the particle densitythe pair density
the PC class g%/ v, ~1.11, see Appendjxwhile for strong  p*, and the ratigp/p* have demonstrated.
diffusion it increases to much larger values. Also in this case The exponentg/ v and /v, extrapolated both fronp

V. DISCUSSION

036113-5



G. T. BARKEMA AND E. CARLON PHYSICAL REVIEW E68, 036113(2003

andp* appear to be stable as functions of the diffusion conwill lead to models even harder to simulate and analyze than
stantd and actually consistent with the DP class values. Théhe PCPD.

data show a nonmonotonic behavior both in time and system Very recently Kockelkoren and Chatmalyzed a similar
size, which in our opinion points to a crossover phenomenoget of modeld11]. In their formulation the fermionic con-
between two competing types of critical behavior. The surstraint of only one particle per site is released. All the reac-
face exponents, which we also investigated, turned out to bons of the typenA— (n+k)A and 2A—0 with n>2 were
instead rather sensitive to the valuedpfa sign, in our opin- found to belong to the DP class. Surprisingly, in all those.
ion, that the extrapolated values are probably not the trug0dels the convergence to DP exponents seems to be quite
asymptotic ones. Interestingly enough, particularly at wea@St(at least forg/v)) and not plagued by the strong correc-

diffusion, the extrapolated values are rather stable and corfions found in the fermionic models. It would be interesting
sistent with those expected for the PC class. to study the same models at different values of the diffusion

In early numerical studies of the PCAB—6], restricted constant, as in the PCPD the onset of crossover behavior is

to shorter simulation times and system lengths compared tgmte strongly influenced by the value f

those considered here, several quantitieg/as , /v, and

v /v, were found to be quite consistent with the PC class

values. It is now generally agreed that the PCPD does not We are grateful to J.D. Noh, H. Hinrichsen, M. den Nijs,

belong to the PC universality class, as more extensive simwand F. van Wijland for useful discussions.

lations performed by several groups have shown convinc-

ingly [7—11]. Still one would like to understand if the ob- APPENDIX: SURFACE CRITICAL BEHAVIOR

served similarity with the PC exponent is purely fortuitous or IN THE PARITY CONSERVING PROCESS 2 A—0, A—3A

if there is some deeper reason for it. In our opinion the evi- .

dence given above that also the surface exponents extraplpl— V_Ve present h(_are some r_esults on the S!”face critical be-

late towards PC values in an intermediate regime strongliigx?;:f tge Ean;yAcgrr:Sev:/\i/tergsia;(ige;:rt(ijszngi?fubs)i/otr?eV\r/GéaC-
. . - . —U, A— .

suggests that there is a genuine nonasymptotic PC-like "Show how DMRG produces accurate surface critical expo-

gime, with a crossover to DP behavior at longer time scalesﬁents for this model, which are in good agreement with

hil Qiﬁéoigtgggmmevﬁll(ICvittr;\eelflgndgfsfiplzrfgéig\?\fe?lngeanm-former Monte Carlo simulation results. For the single par-

. . e 227 ticle diffusion and pair annihilation we used the same rates as

fined by the reaction&\—3A, 2A—0 plus diffusion[1,2], b

; . . ., in Eq. (1), while we assign a rate (1p)(1—d) to the reac-
which dn‘fer; from the PCPD only for the reaction Wh'(.:h tion OAO— AAA. We restrict ourselves to a single value of
creates particles. We argue that the early stages of the cnﬂcafe diffusion constant—0.5
dynamics, when the system has a rather high particle density, : . - : o
are dominated by the annihilation proce#s-20, so that the We first estimated the critical point @t=p~0.577(2)

" . ) by means of Monte Carlo simulations using a standard ap-
substitution of the BARWe reactioA— 3A with that of the : . Lo
. . roach. As mention ve, for surf niversality in P
PCPD 22—3A may result in a very weak perturbation of proach. As mentioned above, for surface universality ¢

. . ; rocesses there are two possible types of boundary condi-
the system. Therefore a tr_anS|ent PC-ike regime may be o ions leading to two distinct surface exponef2g]. In the
served fort=< 7., wherer. is some crossover time. This ar-

; . irst case, the system is truncated at one edge and no particles
gument may help to explain features observed in the PCP[;, 4 9 P
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and should be equally valid for other models where the an- 0.82 , , :
nihilation is of the type 2—0 and with different creation =16 N
rulesnA— (n+k)A with n=2, k>0; for such systems we 08| |15 N, | :
expect a transient PC regime as well. ‘ /"amcles

The study of reaction-diffusion systems where the annihi- 078 | 112 | B |
lation and creation reactions involve=2 particles has re-
cently drawn some attentiofil1,17,23. In particular, we €076 | 110 : : /" pairs
mention here the two cases recently considered dgrQ7] s 0 004 0.08 0{2/'/
(i) 3A—5A, 2A—0 and(ii) 4A—5A, 2A—0. In model(i) 074 | e
he estimates/v|~0.28 (consistent with PCfor small dif- '__,‘
fusion rates angs/»~0.24 at stronger diffusion. Invoking 072 |- Sasren partitles
some logarithmic corrections he claims that all values ex- "
trapolate toB/»~0.22[17]. In the casdii) the estimate is 07 . ‘ ; : :
Blv~0.28 both at high and low diffusiorf4 7], again con- o 002 0t 005 008 01 0.2

sistent with the PC class value. The above observations sug- L,

gest that these types of systems follow closely a critical be- giG. 9. Piot of the surface effective exponerd; vs 1L for the
havior as described here for the PCPD, and it is thugarity conserving process— 3A and 2A—0 in the case of reflect-
plausible that they fall for sufficiently long times into the DP jng boundary conditions. InsetS; vs 1L for absorbing boundary
class. However, it may turn out to be quite difficult to show conditions. Dashed lines are extrapolated curves through the
this numerically, as we expect that increasing the number 0DMRG data. Extrapolated values are in good agreement with
particles involved in the creation and annihilation reactionsvionte Carlo simulations results of R¢R2] (see text
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are allowed to cross the boundary site; we refer to this asufficiently long chains, indicating that both quantities decay
reflectingboundary conditions. In the second case, particlesvith the same exponent. Our estimag@¥v, ~0.720(2) in
are allowed to drop from the boundary. We implemented thigshe former case ang® v, ~1.10(1) in the latter are ob-

type of boundary condition adding the boundary reac#ion

— 0 (with rated) which mimics the diffusion of particles out

of the system. We refer to this implementationadesorbing
boundary conditions.
Figure 9 shows the effective surface expongijit versus

tained from a polynomial extrapolation inLl/As the finite-
size effects are rather smakee Fig. 9, the extrapolated
values are not very sensitive to the type of correction to
scaling term used in the extrapolation.

The Monte Carlo simulation resul{g2] for the critical

1/L in the case of reflecting boundary conditions, calculatecexponents arg3*=1.34(2) andB°=2.042), for inactive

both from the particldcircles and pair(squarep densities.

and active boundary conditions, respectively. Combining

The same quantities are plotted in the inset in the case dhese results with the PC class correlation length exponent
absorbing boundary conditions. Notice that indeed the results, =1.83(3)[1], one findsg% v, =0.73(1) (reflecting BC$
confirm the existence of two distinct sets of surface expo8%v, =1.11(1) (absorbing BCs in very good agreement
nents and that the data from pairs and particles merge fowith the DMRG calculations.
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