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Universality in the pair contact process with diffusion
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The pair contact process with diffusion is studied by means of multispin Monte Carlo simulations and
density matrix renormalization group calculations. Effective critical exponents are found to behave nonmono-
tonically as functions of time or of system length and extrapolate asymptotically towards values consistent with
the directed percolation universality class. We argue that an intermediate regime exists where the effective
critical dynamics resembles that of a parity conserving process.
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I. INTRODUCTION

Out of equilibrium systems may display phase transitio
analogous to those found in their equilibrium counterpa
These transitions are classified into distinct universa
classes, characterized by a set of critical exponents@1,2#.
Particular attention has been paid to one-dimensional
tems with transitions from an active state into absorb
states, i.e., frozen configurations from which the system c
not escape. For these systems, so far, only two distinct
versality classes have been firmly established: the dire
percolation~DP! and the parity conserving~PC! universality
class. While the former is ubiquitous and found in seve
systems with very different dynamical rules, the latter is o
known to occur when extra symmetries are present@1,2#.

A model which has attracted quite some interest recen
because it may indeed belong to a novel universality c
@3# is the so-called pair contact process with diffusi
~PCPD!. Despite a rather intense activity in the past cou
of years@4–12#, the understanding of the PCPD and its r
lation with other known models is still unsatisfactory. In th
fermionicversion of the model—the one studied here—ea
lattice site is either occupied by a single particle~A! or empty
~0!. The reactions are

H AA0→AAA

0AA→AAA
with rate

~12p!~12d!

2
, ~1!

AA→00 with rate p~12d!,

A0↔0A with rate d

with 0,d,1, 0,p,1. The analysis of the critical prope
ties of the PCPD has shown to be much more difficult th
all similar models analyzed so far and several scenarios h
been proposed. First, a similarity of the exponentsb/n' and
z5n i /n' ~wheren i andn' are the correlation length expo
nents along the time and space directions andb the order
parameter exponent! with those of the PC class@4# was re-
ported, although in the PCPD there is no conservation
parity. It was later suggested that the PCPD could belon
a new universality class with exponents close to, but diff
ent from, the PC values@5#. It has also been argued that the
could be two universality classes@6# at small and large dif-
1063-651X/2003/68~3!/036113~7!/$20.00 68 0361
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fusion rates (d), or continuously varying exponents@7#, or
that scaling may even be violated@8#. More recently the
option of a slow crossover to DP was also discussed@9#,
although the general belief is that the PCPD belongs t
novel universality class@7,8,10–12#. Field theoretical meth-
ods, which have been successfully applied to other react
diffusion models@13# failed so far to clarify the critical prop-
erties of the PCPD@3,14#.

In this paper we present some insights into the PCPD.
show that accurate numerical results from Monte Carlo~MC!
simulations and density matrix renormalization gro
~DMRG! calculations convincingly demonstrate that for su
ficiently long times and system lengths the exponents cr
over towards the DP values. Corrections to scaling are, h
ever, rather strong and only an accurate extrapolation of
effective critical exponents allows to identify the fin
asymptotic critical behavior. We give evidence that in t
near-asymptotic region the model shows effective expone
close to the PC class values, which suggests that the cri
behavior of the system is described by two competing fix
points.

II. RESULTS ON BULK PARTICLES
AND PAIR DENSITIES

Our MC simulations exploit a technique known as mul
spin coding@15#. The basic idea is that in a simulation of 6
systems, each withL sites, the occupation of sitei in thekth
simulation is stored in thekth bit of 64-bit wordA@ i #. To
perform the reactionAA0→AAA in all 64 systems at a ran
domly chosen sitei and its neighbors, one logical operatio
A@ i 11#5A@ i 11#~(A@ i #`A@ i 21#) suffices, where ~
and ` are the logical operationsOR and AND, respectively.
Other reactions require only slightly more elaborate logi
operations. A direct implementation along these lines mi
result in 64 simulations, each of which statistically corre
but strongly correlated to each other because the site se
tion is shared. To alleviate this correlation without sacrifici
efficiency, we employ random bit patterns that decide wh
reaction will be attempted in which system. The strong po
of multispin coding is its efficiency. As illustrated abov
only a few logical operations~each usually carried out in a
single clock cycle without delay! suffice to update a site in
64 systems simultaneously. For each combination ofd andp
©2003 The American Physical Society13-1
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we simulated 64 systems withL5100 000 sites over 3
3106 Monte Carlo time units, in about 15 h on a singl
processor workstation. We also simulated 16364 systems
with L5100 000 sites over 107 Monte Carlo time units on a
parallel computer, ford50.5 andp50.152 45, our estimate
for the critical point.

A standard procedure to obtain critical exponents
means of Monte Carlo simulations is to study the decay
the particle densityr(t) as a function of timet, starting from
a random configuration of particles. At the critical point o
hasr(t);t2b/n i. To monitor the decay it is convenient t
define the effective exponentdeff[2] ln r(t)/] ln t. Typically
deff is plotted as a function of 1/t. At the critical point, in the
limit t→`, it approaches a finite value (deff→b/n i), while
it deviates upwards or downwards with respect to this va
in the inactive and active phases, respectively. This crite
allows to estimate the critical point location and the ra
b/n i @1#. Some care, however, has to be taken when cor
tions to scaling are particularly strong, for example, wh
r(t);t2b/n i(11ct2g) with g,1 andc a constant. In this
casedeff plotted as a function of 1/t approachesb/n i with an
infinite slope. The ideal situation would be to plotdeff as a
function of 1/tg as in that case the approach to the asympt
value would be linear. Further on in this paper we will gi
numerical evidence that the correction-to-scaling exponeng
is close tob/n i ~which is much smaller than 1!. A natural
choice is therefore to plotdeff as a function of the particle
densityr instead of 1/t, to avoid infinite slopes.

Besides the decay of the particle densityr, we also con-
sider the decay of the pair densityr* [^AA&. Before pre-
senting the results for the critical exponents we analyze
behavior of the ratior/r* at the critical point. Such a quan
tity, which is shown in Fig. 1 ford50.5, approaches a con
stant value ('2.45) asymptotically for long times. The mo
important consequence of this fact is that in PCPD one
extract the critical exponentb/n i both from the decay of the
particle and pair densities@16#. Numerically the ratio is
much better behaved than the individual densitiesr andr* ,
as fluctuations in the individual densities are highly cor

FIG. 1. Ratio of the particle densityr and pair densityr* , as a

function of t2g8, with g850.33, for the PCPD withd50.5 and at
the estimated critical pointp50.152 45. This ratio approaches
constant.
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lated and largely cancel each other in the ratio.
The data of Fig. 1 also provide an estimate of the lead

correction term in the asymptotic limitt→`, which appears
to be of the typer/r* ;C(11Dt2g8) with g8'0.33, as
shown by the linear approach to the asymptotic behavio
the data when plotted versust20.33. This exponent is much
larger than its equivalentg in the particle and pair densities
which implies that the leading corrections forr andr* can-
cel in the ratior/r* . We tested that a similar cancellatio
also occurs in the processA→3A, 2A→0, which belongs to
the PC universality class@1#: the leading correction inr and
r* scales ast20.6, whereas the leading correction in the rat
r/r* scales as 1/t.

Figure 2 shows a plot ofdeff at d50.5 as a function ofr
andr* , calculated in the PCPD from the decay of particl
and pairs, respectively. Three different values forp have
been plotted around the critical point which we estimate
pc50.152 45(5). Forp.pc ~inactive phase! andp,pc ~ac-
tive phase! deff rapidly veers up and down, as expected.
the critical point,deff approaches they axis with a finite
slope, indicating that the leading correction to scaling is m
likely described by an exponent roughly equal tod itself. A
parabolic fit through the data yields as a common estim
for the critical exponentb/n i50.17. Similar calculations
were repeated for other values of the diffusion coefficiend
50.05, 0.1, 0.2, and 0.9~the inset of Fig. 2 shows the cas
d50.1), with the same results which we can summarize w
the estimateb/n i50.17(1). This value is consistent with the
DP class exponentb/n i50.159.

An alternative way to calculate critical exponents wou
be to use a linear fit of the densities versus time on a dou
logarithmic scale. However, such fits are hazardous w
dealing with very slow convergence, as is the case here,
may lead to wrong estimates for the critical exponents.
illustrate this in Fig. 3 which shows the plot of the avera
particle density as a function of the time in a doub

FIG. 2. Plot ofdeff at d50.5 andp50.1524,p50.152 45, and
p50.1525 ~from bottom to top! obtained from the decay of the
particles and pairs densities. The dashed lines are parabolic fi
the data. The two horizontal lines show the ratiob/n i for the DP
and PC class. Inset:d50.1 and p50.1110, p50.111 05, p
50.1111.
3-2
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logarithmic scale ford50.5 andd50.9. In the former case a
straight line~dashed! fits extremely well the critical density
decay leading to the estimatedeff50.219. The analysis of the
effective exponent~see Fig. 2!, however, provides a close
inspection of the local slopes of the double-logarithmic da
This analysis reveals some remaining curvature, and the
estimate of the exponent is significantly lower, compared
that obtained from the fit in the double-logarithmic scale.
the case of higher diffusion@see Fig. 3~b!# the curvature is
more pronounced and clearly visible also in the doub
logarithmic plot, which can be fitted by two straight line
with slopesdeff'0.277 in the range 4& ln t&8, and with
deff'0.212 for 10& ln t&15. Notice that the former exponen
is consistent with that expected for the PC class (dPC
50.286@1#!.

Again an extrapolation of the effective exponent~as done
in Fig. 2! shows convergence to a value consistent with D
Note that the valueb/n i'0.21 is consistent with the mos
recent Monte Carlo estimates for the PCPD@9,11,17#. In par-
ticular, Kockelkoren and Chate´ @11# performed a series o
Monte Carlo simulations for a bosonic version of the PC
where the constraint of one particle per site is released. T
estimation of critical exponents is based on a straight-line
to a double-logarithmic plot ofr versust, from which they
find b/n i50.200(5). This bosonic version of the model i
claimed to suffer less from corrections to scaling than
fermionic case. Notice, however, that also in the fermio
PCPD studied here the density decay atd50.5 @see Fig.
3~a!# is rather straight in a double-logarithmic plot for sim
lation times similar to those in Ref.@11#. The advantage o
the effective exponent analysis performed here is that it
lows to extrapolate the numerical results to time scalesbe-
yond those actually simulated.

Next we present some DMRG results. DMRG@18# allows
to calculate accurate stationary state probabilities for ch

FIG. 3. Log-log plots ofr ~particle density! vs t. ~a! d50.5,
p50.1524,p50.152 45, andp50.1525~from top to bottom!. ~b!
d50.9 andp50.2330,p50.2335, andp50.234~from top to bot-
tom!. The critical point densities are plotted as thick solid lines. T
dashed lines are linear fits to the data, shifted for clarity.
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of moderate lengths@19#. As usual in DMRG, we used ope
boundary conditions. In the PCPD on a lattice of finite leng
there are only two stationary states: a state with no parti
and a state occupied by a single diffusing particle. To indu
a finite density of particles we added a reaction 0→A at the
two boundary sites. The particle density decays from the
boundaries and forms a U-shaped profile. For chains of v
ous lengths we calculated the density of particlesr(L) and
of pairsr* (L) at the central site of a system of lengthL. At
the critical point these quantities decay in the limitL→` as
r(L);r* (L);L2b/n'.

Figure 4 shows the effective exponentgeff5
2] ln r(L)/] ln L versusr for d50.5 at the critical point. As
in Fig. 2, we include also the data for the pairs. Dotted a
dashed lines are fits with polynomials in the densities. Aga
a test of good convergence is that both exponents extrapo
to the same asymptotic value. This requirement seems ind
to be fulfilled and we find as extrapolationb/n'50.27(4).
This exponent is again consistent with the DP valueb/n'

50.252 @1#. Similar results have also been found for oth
values of the diffusion coefficientd. Extrapolations ford
50.2 are shown in the inset of Fig. 4. At smalld the maxima
in geff shift to longerL, thus extrapolations are somewh
less stable. In this case we take the estimate obtained f
the particlesb/n'50.28(5).

Previous DMRG results@4# were restricted to the densit
of particles and to smaller systems than that studied h
The data for the effective exponent showed a monotonic
havior ~except at very strong diffusion! and were analyzed
using an extrapolation with polynomes in 1/L. These ex-
trapolations lead to a value consistent with the PC class
ponentb/n'50.50 @4#. The present calculation, extended
the density of pairs and to longer systems, reveals that n
monotonicity in the effective exponent is a common featu
at all d. This nonmonotonicity leads to a rather strong d
crease of the extrapolated exponent compared to the
mates of Ref.@4#.

e

FIG. 4. Plots ofgeff for d50.5 at the system critical point (p
50.152 45) for lattices up toL560 calculated from the decay o
particle ~circles! and pair~squares! densities as function of the lat
tice lengths. The dotted and dashed lines are fits in powers of
densities. Inset:geff for d50.2.
3-3
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III. RESULTS ON THE DYNAMICAL EXPONENT

From the ratio of the exponentsb/n' and b/n i one can
estimate the dynamical exponentz5n i /n' . Since both
b/n' and b/n i are consistent with DP, also the dynamic
exponentz agrees with the DP valuezDP51.58. It is, how-
ever, instructive to show the results of an independent ca
lation of z. This quantity can be obtained from a finite-si
scaling analysis ofD, the gap of the master operator, whic
is the inverse of the relaxation time of the system~see Ref.
@19# for details!. As a function of the system lengthL the gap
decays asD;L2z.

Figure 5 shows a plot of the effective exponentzeff5
2] ln D/] ln L versus 1/L. The calculations are similar to
those reported in Ref.@4#, but now for longer systems~up to
L546 compared toL530 of Ref. @4#!. The critical point
locations were obtained from Monte Carlo simulation
which for this purpose are faster and more efficient th
DMRG. Therefore we concentrated our computational effo
on a single value ofp5pc and could obtain results for longe
systems. As is clear from Fig. 5, the exponentzeff is rather
sensitive to the value of the diffusion rated. As the estimates
of b/n' andb/n i are instead rather stable as a function od
we contribute this sensitivity to rather strong finite-size
fects. Notice that the finiteL corrections change sign from
the weak to the strong diffusion regime. The border value
aroundd50.5 wherezeff has a very weak dependence onL.
The data~see inset! run extremely close to the PC valu
zPC51.75. At higher diffusion ratesd'0.8–0.9 the effective
exponentzeff for the range of sizes investigated is mu
lower thanzPC. At the strongest diffusion investigated, e
trapolations with different forms for the correction to scali
terms as 1/L or 1/AL yield values in the range 1.5&z
&1.65, which should be compared with the DP valuezDP
51.58. Current Monte Carlo estimates from various auth
@5,6,11# place the exponentz in the range 1.7–1.8 and th
calculations were mostly performed in the weak diffusi
regime.

We also performed a series of Monte Carlo simulations
calculate the exponentz using finite-size scaling analysis. A

FIG. 5. Plot of the effective exponentzeff as a function of 1/L
for d50.2, 0.5, 0.8, and 0.9. Inset: blowup of the data ford
50.5.
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the critical point and on a finite system the particle dens
decays asr5t2b/n i f (tL2z), with f a scaling function. For
finite L, r follows a power-law decay up to a characteris
time t after which it drops exponentially. One expects that
scales ast;Lz. To estimatet we calculatedr for lattices up
to L55000 andt5107 Monte Carlo time units. Figure 6
shows a plot of ln(tb /nir) versus lnt for various L and d
50.9. The intersection of the data with a horizontal line
tb/n ir5k ~with k a constant! provides an estimate oft. As
we work in a region where the particle density is rather lo
and fluctuations are large, and as the calculation ofz requires
very smooth data, we performed averages over a large n
ber of samples (.103). For the calculation we usedb/n i
50.17, which is the value determined above, andk522
~see Fig. 6!. The inset shows a double-logarithmic plot oft
versusL for d50.2 andd50.9 at their critical points. In the
former case we restricted ourselves toL52000 as the rel-
evant times are typically longer at weak than at stron
diffusion, as expected. Notice that in both cases the data
well fitted by straight lines yielding the estimatesz
51.70(3) ford50.2 andz51.61(3) ford50.9, where the
latter value is consistent with the dynamical exponent of
rected percolationzDP51.58. The results generally confirm
the DMRG findings according to which the dynamical exp
nent is generically smaller, for finiteL, at higher diffusivity.
We also notice that by varying the value ofb/n i entering in
the y axis of Fig. 6 one changes the estimate forz. For in-
stance, if we takeb/n i50.20, as calculated in Ref.@11#, this
leads to an increase of 0.03 in the estimated value forz. The
estimate ofz is rather stable for changes in the constantk.

IV. RESULTS ON SURFACE DENSITIES

Boundary quantities are easily accessible in DMRG te
niques @20#, as one is basically forced to work with ope
boundary conditions. Surface criticality in absorbing pha
transitions has been the subject of several studies in the
years both for models in the DP@21# and in the PC@22#
universality classes. In the latter case, it is known that th

FIG. 6. Scaled particle density ford50.9 at the estimated criti-
cal pointp50.2335 forL5100, 200, 500, 1000, 2000, and 500
Inset: plot of lnt vs lnL for two values of the diffusion constant
We estimatez51.61(3) ford50.9 andz51.70(3) ford50.2.
3-4
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are two distinct surface exponents depending on the typ
boundary conditions applied@22#. The results of a DMRG
calculation of the surface critical exponents for a reacti
diffusion model in the PC class are presented in the App
dix. Here, we report on the surface critical exponent cal
lations for the PCPD, using the same types of bound
conditions as in the Appendix.

As in the calculation of the bulk particle density of th
preceding section we inject particles through the reactio
→A at the boundary site labeled by the positioni 51 in
order to induce a finite density of particles in the system, a
we measure the particle densityrs(L) at the opposite bound
ary site i 5L. Asymptotically for L→`, we expectrs(L)
;L2bs/n', wherebs is the order parameter surface expone
The two different boundary conditions~BCs! applied at the
site i 5L are:~a! No particles are allowed to leave the syste
from the boundary site and~b! particles may diffuse out o
the system, i.e., the reactionA→0 ~with rated) is added at
that site. We refer to these asreflectingandabsorbingbound-
ary conditions, respectively.

In Fig. 7 we plot the effective exponentgeff
s 5

2] ln rs(L)/] ln L versusrs in the case of reflecting BCs
Horizontal lines show the ratiobs/n' for DP (50.667
@19,21#! and PC (50.72 @22#!. In the DP case the differen
BCs produce the same critical exponent. Effective expone
in this case grow monotonically, contrary to what is fou
for bulk exponents. Notice that a cubic fit yields a qu
stable estimatebs/n'50.72(1) in the ranged&0.5, a value
actually consistent with the surface exponent for the PC c
~see Appendix!. Only at higherd we observe some deviatio
from PC. The fact that the extrapolated surface expone
vary with d, while our current estimates for the bulk exp
nents are independent ond, is an indication that the forme
are not yet the correct asymptotic ones.

Figure 8 showsgeff
s versusrs for the case of absorbing

boundary conditions. Again for weak diffusion the expone
seems to extrapolate rather convincingly to values clos
the PC class (bs/n''1.11, see Appendix!, while for strong
diffusion it increases to much larger values. Also in this ca

FIG. 7. Plots ofgeff
s for three different values of the diffusion

constant. Horizontal lines are the reference exponents for the
and PC universality classes.
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there is no clear signature of nonmonotonic behavior, exc
for the cased50.5 where the data for the largest system
pass through a maximum.

We also analyzed the effective exponent data from
pair densityr* s which are shown in the inset of Fig. 8 in th
case of absorbing BCs, and plotted as functions ofr* s. In
the ranged&0.5 the data extrapolate close to the PC surfa
exponentbs/n''1.11 as for the particle density. At ver
strong diffusion (d50.9) the surface effective exponen
shows a nonmonotonic behavior with a maximum arou
geff

s '2.2. Notice that particle and pair exponents in this ca
are rather far apart from each other and it is quite hard to
a common extrapolation value. We would expect forgeff

s a
similar behavior as for the bulk exponents, i.e., an incre
followed by a decrease towards the asymptotic value.
suspect that in the present surface exponent calculation
decreasing side has barely been reached. So we tend to
trust the extrapolation as estimates of the genuine asymp
behavior. They rather provide some insight on the preasy
totic region and actually point to a similarity with PC surfa
exponents at weak diffusion.

V. DISCUSSION

To conclude, by combining Monte Carlo and DMRG ca
culations we analyzed the critical properties of the pair c
tact process with diffusion. This model has been the sub
of increasing attention in recent years. Although the deb
around it has not yet been settled, the main belief is that
PCPD belongs to a novel universality class which diffe
from the known DP and PC classes.

In our opinion, however, the most plausible scenario
the PCPD is that it ultimately falls into the DP universali
class. The asymptotic behavior is, however, masked by ra
strong finite size and time effects, characterized by sm
correction-to-scaling exponents, as our Monte Carlo simu
tions for the decays of the particle densityr, the pair density
r* , and the ratior/r* have demonstrated.

The exponentsb/n i and b/n' extrapolated both fromr

P
FIG. 8. Plots ofgeff

s vs rs for different values of the diffusion
constant and absorbing boundary conditions. Inset:geff

s vs r* s cal-
culated from the surface pair density.
3-5



on
h

te
no
ur

b

tru
a
o

d

s
n

m
in
-
o
v
a
g
r

le
n

h
itic
s

f
o

r-
P
an

ih

ex

su
be
u
P
w
r
n

han

ac-

se
quite
c-
g

ion
or is

s,

be-
ac-

po-
ith
ar-

as

of

ap-
PC
ndi-

ticles

the
ith
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andr* appear to be stable as functions of the diffusion c
stantd and actually consistent with the DP class values. T
data show a nonmonotonic behavior both in time and sys
size, which in our opinion points to a crossover phenome
between two competing types of critical behavior. The s
face exponents, which we also investigated, turned out to
instead rather sensitive to the value ofd; a sign, in our opin-
ion, that the extrapolated values are probably not the
asymptotic ones. Interestingly enough, particularly at we
diffusion, the extrapolated values are rather stable and c
sistent with those expected for the PC class.

In early numerical studies of the PCPD@4–6#, restricted
to shorter simulation times and system lengths compare
those considered here, several quantities asb/n' , b/n i , and
n i /n' were found to be quite consistent with the PC cla
values. It is now generally agreed that the PCPD does
belong to the PC universality class, as more extensive si
lations performed by several groups have shown conv
ingly @7–11#. Still one would like to understand if the ob
served similarity with the PC exponent is purely fortuitous
if there is some deeper reason for it. In our opinion the e
dence given above that also the surface exponents extr
late towards PC values in an intermediate regime stron
suggests that there is a genuine nonasymptotic PC-like
gime, with a crossover to DP behavior at longer time sca

A prototype model in the PC class is the branching an
hilating random walk with even offsprings~BARWe!, de-
fined by the reactionsA→3A, 2A→0 plus diffusion@1,2#,
which differs from the PCPD only for the reaction whic
creates particles. We argue that the early stages of the cr
dynamics, when the system has a rather high particle den
are dominated by the annihilation process 2A→0, so that the
substitution of the BARWe reactionA→3A with that of the
PCPD 2A→3A may result in a very weak perturbation o
the system. Therefore a transient PC-like regime may be
served fort&tc , wheretc is some crossover time. This a
gument may help to explain features observed in the PC
and should be equally valid for other models where the
nihilation is of the type 2A→0 and with different creation
rulesnA→(n1k)A with n>2, k.0; for such systems we
expect a transient PC regime as well.

The study of reaction-diffusion systems where the ann
lation and creation reactions involven>2 particles has re-
cently drawn some attention@11,17,23#. In particular, we
mention here the two cases recently considered by O´ dor @17#
~i! 3A→5A, 2A→0 and~ii ! 4A→5A, 2A→0. In model~i!
he estimatesb/n i'0.28 ~consistent with PC! for small dif-
fusion rates andb/n i'0.24 at stronger diffusion. Invoking
some logarithmic corrections he claims that all values
trapolate tob/n i'0.22 @17#. In the case~ii ! the estimate is
b/n i'0.28 both at high and low diffusions@17#, again con-
sistent with the PC class value. The above observations
gest that these types of systems follow closely a critical
havior as described here for the PCPD, and it is th
plausible that they fall for sufficiently long times into the D
class. However, it may turn out to be quite difficult to sho
this numerically, as we expect that increasing the numbe
particles involved in the creation and annihilation reactio
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will lead to models even harder to simulate and analyze t
the PCPD.

Very recently Kockelkoren and Chate´ analyzed a similar
set of models@11#. In their formulation the fermionic con-
straint of only one particle per site is released. All the re
tions of the typenA→(n1k)A and 2A→0 with n.2 were
found to belong to the DP class. Surprisingly, in all tho
models the convergence to DP exponents seems to be
fast ~at least forb/n i) and not plagued by the strong corre
tions found in the fermionic models. It would be interestin
to study the same models at different values of the diffus
constant, as in the PCPD the onset of crossover behavi
quite strongly influenced by the value ofd.
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APPENDIX: SURFACE CRITICAL BEHAVIOR
IN THE PARITY CONSERVING PROCESS 2 A\0, A\3A

We present here some results on the surface critical
havior of the parity conserving process defined by the re
tions 2A→0, A→3A and with single particle diffusion. We
show how DMRG produces accurate surface critical ex
nents for this model, which are in good agreement w
former Monte Carlo simulation results. For the single p
ticle diffusion and pair annihilation we used the same rates
in Eq. ~1!, while we assign a rate (12p)(12d) to the reac-
tion 0A0→AAA. We restrict ourselves to a single value
the diffusion constantd50.5.

We first estimated the critical point atp5pc'0.577(2)
by means of Monte Carlo simulations using a standard
proach. As mentioned above, for surface universality in
processes there are two possible types of boundary co
tions leading to two distinct surface exponents@22#. In the
first case, the system is truncated at one edge and no par

FIG. 9. Plot of the surface effective exponentgeff
s vs 1/L for the

parity conserving processA→3A and 2A→0 in the case of reflect-
ing boundary conditions. Inset:geff

s vs 1/L for absorbing boundary
conditions. Dashed lines are extrapolated curves through
DMRG data. Extrapolated values are in good agreement w
Monte Carlo simulations results of Ref.@22# ~see text!.
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are allowed to cross the boundary site; we refer to this
reflectingboundary conditions. In the second case, partic
are allowed to drop from the boundary. We implemented t
type of boundary condition adding the boundary reactionA
→0 ~with rated) which mimics the diffusion of particles ou
of the system. We refer to this implementation asabsorbing
boundary conditions.

Figure 9 shows the effective surface exponentgeff
s versus

1/L in the case of reflecting boundary conditions, calcula
both from the particle~circles! and pair~squares! densities.
The same quantities are plotted in the inset in the cas
absorbing boundary conditions. Notice that indeed the res
confirm the existence of two distinct sets of surface ex
nents and that the data from pairs and particles merge
s
e,

03611
s
s

is

d

of
lts
-
or

sufficiently long chains, indicating that both quantities dec
with the same exponent. Our estimatesbs/n''0.720(2) in
the former case andbs/n''1.10(1) in the latter are ob
tained from a polynomial extrapolation in 1/L. As the finite-
size effects are rather small~see Fig. 9!, the extrapolated
values are not very sensitive to the type of correction
scaling term used in the extrapolation.

The Monte Carlo simulation results@22# for the critical
exponents arebs51.34(2) andbs52.04(2), for inactive
and active boundary conditions, respectively. Combin
these results with the PC class correlation length expon
n'51.83(3) @1#, one findsbs/n'50.73(1) ~reflecting BCs!
bs/n'51.11(1) ~absorbing BCs!, in very good agreemen
with the DMRG calculations.
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